AAE(aae是什么文件)

频道:电子元器件 日期: 浏览:302

AAE

本文内容来自于互联网,分享AAE(aae是什么文件)

AAE(

AAE(aae是什么文件)

AAE

AdaptiveArithmeticEncoder),自适应算术码编码器。编码器(encoder)是将信号(如比特流)或数据编制、转换为可用以通讯、传输和存储之形式的设备。编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。

按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

编码器工作原理

绝对脉冲编码器:APC

增量脉冲编码器:SPC

两者一般都应用于速度控制或位置控制系统的检测元件.

旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。

增量型编码器与绝对型编码器的区分

编码器如以信号原理来分,有增量型编码器,绝对型编码器。

增量型编码器(旋转型)

AAE(aae是什么文件)

工作原理:

由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。

编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

信号输出:

信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。

如单相联接,用于单方向计数,单方向测速。

A.B两相联接,用于正反向计数、判断正反向和测速。

A、B、Z三相联接,用于带参考位修正的位置测量。

A、A-,B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。

对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。

对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

算术编码是把一个信源表示为实轴上0和1之间的一个区间,信源集合中的每一个元素都用来缩短这个区间。自适应算术编码在一次扫描中可完成两个过程,即概率模型建立过来和扫描编码过程。自适应算术编码在扫描符号序列前并不知道各符号的统计概率,这时假定每个符号的概率相等,并平均分配区间[0,1]。然后在扫描符号序列的过程中不断调整各个符号的概率。同样假定要编码的是一个来自四符号信源{A,B,C,D}的五个符号组成的符号序列:ABBCD。编码开始前首先将区间[0,1]等分为四个子区间,分别对应A,B,C,D四个符号。扫描符号序列,第一个符号是A,对应区间为[0,0.25],然后改变各个符号的统计概率,符号A的概率为2/5,符号B的概率为1/5,符号C的概率为1/5,符号D的概率为1/5,再将区间[0,0.25]等分为五份,A占两份,其余各占一份。接下来对第二个符号B进行编码,对应的区间为[0.1,0.15],再重复前面的概率调整和区间划分过程。

实现算术编码首先需要知道信源发出每个符号的概率大小,然后再扫描符号序列,依次分割相应的区间,最终得到符号序列所对应的码字。整个编码需要两个过程,即概率模型建立过程和扫描编码过程。算术编码的基本原理是:根据信源可能发现的不同符号序列的概率,把[0,1]区间划分为互不重叠的子区间,子区间的宽度恰好是各符号序列的概率。这样信源发出的不同符号序列将与各子区间一一对应,因此每个子区间内的任意一个实数都可以用来表示对应的符号序列,这个数就是该符号序列所对应的码字。显然,一串符号序列发生的概率越大,对应的子区间就越宽,要表达它所用的比特数就减少,因而相应的码字就越短。

出一个实现算术编码的示例。要编码的是一个来自四符号信源{A,B,C,D}的由五个符号组成的符号序列:ABBCD。假设已知各信源符号的概率分别为:P(A)=0.2,P(B)=0.4,P(C)=0.2,P(D)=0.2。编码时,首先根据各个信源符号的概率将区间[0,1]。分成四个子区间。符号A对应[0,0.2],符号B对应[0.2,0.6],符号C对应[0.6,0.8],符号D对应[0.8,1.0]。符号序列中第一个符号是A,其对应的区间为[0,0.2],接下来将这个区间扩展为整个高度,再根据各个信源符号的概率将这个间扩展为整个高度,再根据各个信源符号的概率将这个新区间分成四段;第二个符号是B,它对应新的子区间的第二个子区间,即对应区间[0.04,0.12];再将该区间扩展为整个高度,再根据这个过程直接最后一个符号得到一个区间[0.08032,0.0816],这样该区间内的任何一个实数就可以表示整个符号序列,如0.081。


关键词:AAE文件什么